Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

(Ethanol-O)tris(nitrato-O,O')bis(triphenylphosphine oxide-O)cerium(III)

William Levason, Elizabeth H. Newman and Michael Webster*
Department of Chemistry, University of Southampton, Southampton SO17 1BJ England
Correspondence e-mail: m.webster@soton.ac.uk

Received 26 June 2000
Accepted 2 August 2000

The title compound, $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)_{2}\right]$, contains discrete molecules with nine-coordinate Ce atoms having all nitrate groups bonded as symmetrical bidentate ligands $[\mathrm{Ce}-\mathrm{O}(\mathrm{P}) \quad 2.369(2)$ and $2.385(2), \quad \mathrm{Ce}-\mathrm{O}(\mathrm{N})$ 2.549 (3)-2.596 (3) and $\mathrm{Ce}-\mathrm{O}(\mathrm{Et}) 2.515$ (3) \AA].

Comment

As part of an ongoing study into the solution equilibria found in lanthanide complexes of phosphine oxides, the compound $\left[\mathrm{Ce}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)_{2}(\mathrm{EtOH})\left(\mathrm{NO}_{3}\right)_{3}\right]$, (I), was isolated (Cousins \& Hart, 1967).

(I)

The paramagnetic $\left(f^{1}\right)$ species showed a single contact shifted ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonance $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 300 \mathrm{~K}\right)$ with a high frequency shift, $\delta=72.0$ (relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$), and addition of $\mathrm{Ph}_{3} \mathrm{PO}$ showed discrete resonances for the ligand at $\delta=$ 26.0, consistent with slow exchange on the NMR timescale. In dichloromethane solution, the complex is a non-electrolyte, the conductivity being only very slightly above that of the pure solvent, and hence the nitrate groups remain coordinated. The crystal structure revealed a nine-coordinate cerium bonded to three bidentate nitrate groups, two phosphine oxides and ethanol. The nitrate ion is bonded as a symmetrical bidentate ligand with the $\mathrm{O}_{c}-\mathrm{N}-\mathrm{O}_{c}$ angle smaller than the idealized value in the free $D_{3 \mathrm{~h}} \mathrm{NO}_{3}{ }^{-}$anion, where O_{c} is a coordinated O atom. As noted before (Valle et al., 1986), the uncoordinated O atom $\left(\mathrm{O}_{t}\right)$ has shorter $\mathrm{N}-\mathrm{O}_{t}$ distances than the $\mathrm{N}-\mathrm{O}_{c}$ distances by ca $0.05 \AA$. If the nitrate groups are conceptually replaced by a monodentate ligand, the coordination around Ce may be described as 'mer-octahedral', with the phosphine
oxides being cis. The three planar NO_{3} groups are approximately perpendicular to each other. The $M-\mathrm{O}-\mathrm{P}$ angles are very variable among phosphine oxide complexes and in the present compound are 167.2 (2) and 164.4 (2) ${ }^{\circ}$. Three other compounds with the same stoichiometry were identified from the Cambridge Structural Database (Allen \& Kennard, 1993) for Eu (Valle et al., 1986), Nd (Huang et al., 1985) and Sm (Sakamoto \& Miyake, 1993) and it is likely that all are isomorphous. A related $\mathrm{Ce}^{\mathrm{III}}$ complex with three triphenylphosphine oxides and three nitrate ligands has been reported (Lin et al., 1994).

Figure 1
The molecular structure of (I) showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level, with H atoms omitted for clarity. The disordered ethyl group (C37A and C38A) is shown as one of the two contributors to the disorder.

Experimental

Cooling a boiling ethanol solution of $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ph}_{3} \mathrm{PO}$ (1:2) gave the title compound. Suitable crystals were isolated from the reaction product.

Crystal data
$\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)_{2}\right]$
$M_{r}=928.76$
Monoclinic, $P 2_{1} / n$
$a=17.202(2) \AA$
$b=10.9235(18) \AA$
$c=22.3209$ (16) \AA
$\beta=105.667$ (7) ${ }^{\circ}$
$V=4038.4(9) \AA^{3}$
$Z=4$
Data collection
Rigaku AFC- $7 S$ diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical ψ
\quad scan (North et al., 1968)
$\quad T_{\min }=0.587, T_{\max }=0.826$
7353 measured reflections
7102 independent reflections
5317 reflections with $I>2 \sigma(I)$
$D_{x}=1.528 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11.8-15.6^{\circ}$
$\mu=1.271 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colourless
$0.50 \times 0.40 \times 0.15 \mathrm{~mm}$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 20$
$k=0 \rightarrow 12$
$l=-26 \rightarrow 25$
3 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F^{2}	Only H-atom U 's refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.05 P)^{2}\right]$
$w R\left(F^{2}\right)=0.091$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.031$	$(\Delta / \sigma)_{\max }=0.006$
7102 reflections	$\Delta \rho_{\max }=0.44 \mathrm{e}^{-3}$
504 parameters	$\Delta \rho_{\min }=-0.85 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ce} 1-\mathrm{O} 1$	$2.369(2)$	$\mathrm{P} 2-\mathrm{O} 2$	$1.501(3)$
$\mathrm{Ce} 1-\mathrm{O} 2$	$2.385(2)$	$\mathrm{O} 3-\mathrm{N} 1$	$1.224(4)$
$\mathrm{Ce} 1-\mathrm{O} 4$	$2.580(3)$	$\mathrm{O} 4-\mathrm{N} 1$	$1.265(4)$
$\mathrm{Ce} 1-\mathrm{O} 5$	$2.596(3)$	$\mathrm{O} 5-\mathrm{N} 1$	$1.259(4)$
$\mathrm{Ce} 1-\mathrm{O} 7$	$2.549(3)$	$\mathrm{O} 6-\mathrm{N} 2$	$1.213(4)$
$\mathrm{Ce} 1-\mathrm{O} 8$	$2.575(3)$	$\mathrm{O} 7-\mathrm{N} 2$	$1.268(4)$
$\mathrm{Ce} 1-\mathrm{O} 10$	$2.563(3)$	$\mathrm{O} 8-\mathrm{N} 2$	$1.270(4)$
$\mathrm{Ce} 1-\mathrm{O} 11$	$2.572(3)$	$\mathrm{O} 9-\mathrm{N} 3$	$1.217(4)$
$\mathrm{Ce} 1-\mathrm{O} 12$	$2.515(3)$	$\mathrm{O} 10-\mathrm{N} 3$	$1.265(4)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.502(3)$	$\mathrm{O} 11-\mathrm{N} 3$	$1.258(4)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 2$	$91.00(9)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{Ce} 1$	$167.25(17)$
$\mathrm{O} 1-\mathrm{Ce} 1-\mathrm{O} 12$	$151.50(10)$	$\mathrm{P} 2-\mathrm{O} 2-\mathrm{Ce} 1$	$164.39(17)$
$\mathrm{O} 2-\mathrm{Ce} 1-\mathrm{O} 12$	$78.62(10)$	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 5$	$121.2(4)$
$\mathrm{O} 10-\mathrm{Ce} 1-\mathrm{O} 11$	$49.35(10)$	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 4$	$121.4(4)$
$\mathrm{O} 7-\mathrm{Ce} 1-\mathrm{O} 8$	$49.97(9)$	$\mathrm{O} 5-\mathrm{N} 1-\mathrm{O} 4$	$117.4(3)$
$\mathrm{O} 4-\mathrm{Ce} 1-\mathrm{O} 5$	$49.24(9)$		

The ethyl group originally had a very short $\mathrm{C}-\mathrm{C}$ distance with elongated anisotropic displacement parameters and was later modelled as two disordered sites for both C atoms with restraints used on the $\mathrm{O}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances. H atoms were placed in calculated positions with a common refined isotropic displacement parameter, except for the H atom of the OH group, which was not included.

Data collection: MSC/AFC-7S Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC$7 S$ Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1104). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Cousins, D. R. \& Hart, F. A. (1967). J. Inorg. Nucl. Chem. 29, 1745-1757.
Huang, C., Li, G., Zhou, Y., Jin, T. \& Xu, G. (1985). Beijing Dax. Xue. Zir. Kex. pp. 12-20; Chem. Abstr. (1987), 106, 167758x.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lin, J., Hey, E. \& von Schnering, H. G. (1994). Private communication to the Cambridge Structural Database. Refcode LENHIV.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sakamoto, J. \& Miyake, C. (1993). Kidorui, 22, 154-155; Chem. Abstr. (1995), 122, 278608y.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Valle, G., Casotto, G., Zanonato, P. L. \& Zarli, B. (1986). Polyhedron, 5, $2093-$ 2096.

